A	A		A
Name Surname:	Student No:	Duration: 100 minutes	26.11.2022

In the one-dimensional motion of a point particle, the position equation is defined by $x = At^2 + Bt + C$ where x in meters and t in seconds. Based on this information, answer the following two questions (1-2).

1) In which option are the dimensions of constants A, B and C given correctly?

$[A] = [L][T]^{-2}$	$[A] = [L][T]^{-2}$	$[A] = [L][T]^{-2}$	
a) $[B] = [L][T]$	b) $[B] = [L][T]^{-1}$	c) $[B] = [L][T]$	C
[C] = [L]	[C] = [L]	[C] = Dimensionles	s
[A] = [L][2]	T] ⁻¹ [4	$A] = [L][T]^{-1}$	
d) $[B] = [L]$ [C] = [L][2	T^{2} [C	C] = [L][T]	19.
2) For this particle, which started 5 th second were measured as 3 values of constants <i>A</i> , <i>B</i> and <i>C</i>	d its motion from the origin 8 (m), 12 (m/s) and 2 (m/s ²) given correctly?	at <i>t</i> =0, its position, speed and the spectively. In this case, it	and acceleration in the n which option are the
A = 1	$A = -1 \qquad \qquad A = -2$	A = 0.5	A = 1
a) $B = 2$ b) I	B = -2 c) $B = 1$	d) $B = 2$	e) <i>B</i> = 2
$C = -3 \qquad $	C=4 $C=3$	<i>C</i> = 4	<i>C</i> = 3
 3) The velocity-time graphs of verat the beginning, are as in the fold at the beginning, are as in the fold I) Vehicle A is increasing its s II) The distance between vertice increasing. III) The accelerations of the veration of the verage of the version of the verage of the version of th	ehicles A and B, which are a figure. lowing statements are corre- peed relative to vehicle B. vehicles A and B is con- chicles are equal.	side by side 3v ct? atinuously v	A B t 2t 3t
d) II and III	e) I, II, and III		

Vehicles A and B accelerate with accelerations of $\vec{a}_A = \hat{i} + 3\hat{j}$ (m/s²) and $\vec{a}_B = 3\hat{i} - 2\hat{j}$ (m/s²), respectively. Both vehicles started from rest from the origin of the *xy*-coordinate system.

Based on this information, answer the following three questions (4-6).

4) At t=2 (s), which of the following is the velocity vector of vehicle A with respect to vehicle B in (m/s) unit?

a) $8\hat{i} + 2\hat{j}$ b) $2\hat{i} - 5\hat{j}$ c) $-4\hat{i} + 10\hat{j}$ d) $4\hat{i} - 10\hat{j}$ e) $-2\hat{i} + 5\hat{j}$

5) At t=2 (s), what is the distance between vehicles A and B in (m) unit?

a) $\sqrt{116}$ b) $\sqrt{68}$ c) 10 d) $2\sqrt{10}$ e) $\sqrt{102}$

A

A

- 6) At t=2 (s), which of the following is the acceleration vector of vehicle B with respect to vehicle A in (m/s²) unit?
 - a)

a) $8\hat{i} + 2\hat{j}$ b) $2\hat{i} - 5\hat{j}$ c) $-4\hat{i} + 10\hat{j}$ d) $4\hat{i} - 10\hat{j}$ e) $-2\hat{i} + 5\hat{j}$

In a football match, one of the players hits the ball on the ground with a speed of $v_0 = 25$ m/s at an angle of $\theta=37^\circ$ with the horizontal as shown in the figure. Consider the point where the ball was hit as the origin (0;0) and ignore any kind of friction. Based on this information, answer the following two questions (7-8). (g=10 (m/s²), sin37°=0.6 ve cos37°=0.8)

7) Imagine that there is another football player running at a constant velocity from the point (45;0) (m) when the player hits the ball. What is the constant velocity vector in (m/s) unit that this player must run to catch the ball exactly where it hits the ground?

a)
$$\hat{i}$$
 b) $2\hat{i}$ c) $3\hat{i}$ d) $4\hat{i}$ e) $5i$

8) What is the position vector in (m) unit relative to the origin at the moment when the ball reaches its highest point?

a)
$$30\hat{i} + 11.25\hat{j}$$
 b) $15\hat{i} + 22.5\hat{j}$ c) $30\hat{i} + 22.5\hat{j}$

e) $25\hat{i} + 15\hat{j}$

 \overrightarrow{g}

d) $22.5\hat{i} + 30\hat{j}$

Δ

Blocks A and B are in contact with each other on an inclined plane with an inclination angle of 37° as shown in the figure. The masses of the blocks are $m_A=2$ (kg) and $m_B=2$ (kg). The coefficient of kinetic friction between the blocks and the surface of the inclined plane is 0.5. A force \vec{F} which is parallel to the ground is applied to block A as shown in the figure, and the blocks rise with a constant velocity up to the top of the inclined plane. Based on this information, answer the following three questions (9-11).

 $(g=10 \text{ (m/s}^2), \sin 37^\circ = 0.6 \text{ ve } \cos 37^\circ = 0.8)$

9) Which of the following options is the free body diagram of block A given correctly?

A

10) What is the magnitude of the force \vec{F} in (N) unit?

A

a) 72 b) 56 c) 80 d) 24 e) 64

11) What is the force of kinetic friction acting on block A in (N) unit?

a) 48 b) 36 c) 32 d) 24 e) 16

A block of mass m=0.1 (kg) moves on a circular frictionless path of radius R=0.5 (m). As shown in the figure, the speed of the object at $\theta=37^{\circ}$ is v=4 (m/s). Based on this information, answer the following two questions (12-13). $(q=10 \text{ (m/s}^2), \sin 37^{\circ}=0.6 \text{ and } \cos 37^{\circ}=0.8)$

- **12)** In which option are the tangential and centripetal accelerations in (m/s^2) unit of the object given correctly?
 - a) $\begin{array}{c} a_r = 32 \\ a_t = 6 \end{array}$ b) $\begin{array}{c} a_r = 32 \\ a_t = 8 \end{array}$ c) $\begin{array}{c} a_r = 8 \\ a_t = 32 \end{array}$ d) $\begin{array}{c} a_r = 16 \\ a_t = 10 \end{array}$

c) 3.6

13) What is the magnitude of the normal force in (N) unit?

a) 2 b) 1.8

14) Which of the following cannot be explained according to Newton's "Principle of Inertia"?

- a) A little burying of a flower pot that has fallen from a height into soft soil
- b) Acceleration of a falling object
- c) Athlete running before a long jump
- d) The propeller connected to an engine continues to rotate for a while after the engine has stopped.
- e) The seat belt tightens the passenger in a car that comes to a sudden stop.

An object with mass m=2 (kg) starts moving from point A in the figure with a speed of 2 (m/s), reaches point D and stops there. The BC $h_1 = 4m$ = 2mand DC sections of the road have some friction R and the coefficients of kinetic friction are = 8m $\mu_1=0.2$ and μ_2 , respectively. Based on this information, answer the following two questions (15-16). $(g=10 \text{ (m/s^2)}, \cos 53^\circ = 0.6 \text{ ve } \sin 53^\circ = 0.8)$ 15) What is the coefficient of kinetic friction, μ_2 ? a) 0.1 b) 0.2 c) 0.3 d) 0.4 e) 0.5 16) What is the work done by the gravitational force in CD part of the road in (J) unit?

a) -16 b) -24 c) -40 d) -18 e) -12

R

R

An object with mass m = 4 kg is pulled upwards from the ground with a constant force of F=52 (N) between the 2 (m) height walls A and B in the figure without breaking contact with the walls (A and B walls are made of the same material). The friction force (*f*) exerted by both wall surfaces to the object during the motion of the object changes as f=2+y (N), where y is the height of the object from the ground.

A

A

 $\int \overline{g}$

y

Α

Ē

В

Based on this information, answer the following three questions (17-19). $(g=10 \text{ (m/s^2)})$

17) What is the total work done by the forces of friction when y=2 (m)?

a) -14 b) -32 c) -24 d) -16 e) -12

18) What is the total work done when y=2 (m)?

A

a) 14 b) 32 c) 24 d) 16 e) 12

19) If the object started to move from rest at y=0, what is its speed in (m/s) unit at y=2 (m)?

- a) $\sqrt{2}$ b) $\sqrt{6}$ c) $2\sqrt{3}$ d) $3\sqrt{2}$
- 20) A particle is under the influence of the force $F_x = \left(\frac{4}{x^3} \frac{1}{x^2}\right)$ (N) where x is in meters. In which option is the potential energy function of the object correctly given, where c is the integral constant?

c) $-\frac{4}{r^2} - \frac{1}{2r} + c$ a) $\frac{2}{r^2} - \frac{1}{r} + c$ e) $-\frac{4}{r^2} + \frac{1}{2r} + c$

	No	Α	No	Α
	1.	В	11.	С
	2.	Е	12.	А
	3.	D	13.	Е
	4.	С	14.	В
	5.	Α	15.	D
	6	В	16.	С
	7	E	17.	E
	8.	Α	18.	Е
	9.	D	19.	В
	10.	С	20.	A
				\bigcirc
	~		<	
	4	Ň		
	\mathbf{X}			
\bigcirc				